2,124 research outputs found

    Can on-farm bioenergy production make organic farming more sustainable? - A model for energy balance, nitrogen losses, and green house gas emissions in a 1000 ha energy catchment with organic dairy farming and integrated bioenergy production

    Get PDF
    Can biogas and bioethanol production make organic farming more sustainable? - Results from a model for the fossil energy balance, Nitrogen losses, and greenhouse gas emissions in a 1000 ha energy catchment with organic dairy farming and integrated biogas and bioethanol production. Dalgaard T1, Pugesgaard S1, Jørgensen U1, Olesen JE1, Møller HB1 and Jensen ES2 1) Dept. Agroecology and Environment. Faculty of Agricultural Sciences (DJF), University of Aarhus. DK-8830 Tjele. Denmark. Contact: [email protected] 2) Biosystems Department, Risø DTU, The National Laboratory for Sustainable Energy, The Technical University of Denmark DK-4000 Roskilde, Denmark The vision of organic farming systems, independent of fossil energy resources, with significantly lower nutrient losses, and no net contribution to the greenhouse gas emissions might be fulfilled via the integration of biogas production. This is an important hypothesis investigated in the www.bioconcens.elr.dk/uk/ research project. This poster illustrates preliminary results from a model for the fossil energy balance, Nitrogen losses, and greenhouse gas emissions in a 1000 ha energy catchment with organic dairy farming and integrated biogas production in Denmark. The model will draw on results from previous models (e.g the farmGHG model), and includes a number of organic dairy farm type components, including information on livestock production, housing, manure storage, manure and fodder import/export, crop rotations, yield levels, and soil types. In addition, a biogas plant model component evaluates effects of the inclusion of variable amounts of manures and crop residues from the specified farm types, into the biogas energy production. The model is intended to result in an overall catchment balance for the following three types of indicators: 1) the fossil energy use – i.e. the net fossil energy use minus the bioenergy production, 2) losses of Nitrogen in the form of nitrates, ammonia and nitrous oxide, and 3) the emission of the three main greenhouse gasses from agriculture: carbon dioxide, nitrous oxide and methane, measured in carbon dioxide equivalents. Moreover, these indicator values are specified for each of the farm types included in the model, and for the biogas plant component. Finally, selected model results are discussed in relation to the overall hypothesis of the research project, and it is discussed how the integration of biogas production in organic farming, can help to improve the self-sufficiency in Nitrogen, and thereby reduce the import of nutrients to the organic farming systems

    High Frame-rate Imaging Based Photometry, Photometric Reduction of Data from Electron-multiplying Charge Coupled Devices (EMCCDs)

    Get PDF
    The EMCCD is a type of CCD that delivers fast readout times and negligible readout noise, making it an ideal detector for high frame rate applications which improve resolution, like lucky imaging or shift-and-add. This improvement in resolution can potentially improve the photometry of faint stars in extremely crowded fields significantly by alleviating crowding. Alleviating crowding is a prerequisite for observing gravitational microlensing in main sequence stars towards the galactic bulge. However, the photometric stability of this device has not been assessed. The EMCCD has sources of noise not found in conventional CCDs, and new methods for handling these must be developed. We aim to investigate how the normal photometric reduction steps from conventional CCDs should be adjusted to be applicable to EMCCD data. One complication is that a bias frame cannot be obtained conventionally, as the output from an EMCCD is not normally distributed. Also, the readout process generates spurious charges in any CCD, but in EMCCD data, these charges are visible as opposed to the conventional CCD. Furthermore we aim to eliminate the photon waste associated with lucky imaging by combining this method with shift-and-add. A simple probabilistic model for the dark output of an EMCCD is developed. Fitting this model with the expectation-maximization algorithm allows us to estimate the bias, readout noise, amplification, and spurious charge rate per pixel and thus correct for these phenomena. To investigate the stability of the photometry, corrected frames of a crowded field are reduced with a PSF fitting photometry package, where a lucky image is used as a reference. We find that it is possible to develop an algorithm that elegantly reduces EMCCD data and produces stable photometry at the 1% level in an extremely crowded field.Comment: Submitted to Astronomy and Astrophysic

    Absolute dimensions of solar-type eclipsing binaries. EF Aquarii: a G0 test for stellar evolution models

    Full text link
    Recent studies have shown that stellar chromospheric activity, and its effect on convective energy transport in the envelope, is most likely the cause of significant radius and temperature discrepancies between theoretical evolution models and observations. We aim to determine absolute dimensions and abundances for the solar-type detached eclipsing binary EF Aqr, and to perform a detailed comparison with results from recent stellar evolutionary models. uvby-beta standard photometry was obtained with the Stromgren Automatic Telescope. The broadening function formalism was applied on spectra observed with HERMES at the Mercator telescope in La Palma, to obtain radial velocity curves. Masses and radii with a precision of 0.6% and 1.0% respectively have been established for both components of EF Aqr. The active 0.956 M_sol secondary shows star spots and strong Ca II H and K emission lines. The 1.224 M_sol primary shows signs of activity as well, but at a lower level. An [Fe/H] abundance of 0.00+-0.10 is derived with similar abundances for Si, Ca, Sc, Ti, V, Cr, Co, and Ni. Solar calibrated evolutionary models such as Yonsei-Yale, Victoria-Regina and BaSTI isochrones and evolutionary tracks are unable to reproduce EF Aqr, especially for the secondary, which is 9% larger and 400 K cooler than predicted. Models adopting significantly lower mixing length parameters l/H_p remove these discrepancies, as seen in other solar type binaries. For the observed metallicity, Granada models with a mixing length of l/H_p=1.30 (primary) and 1.05 (secondary) reproduce both components at a common age of 1.5+-0.6 Gyr. Observations of EF Aqr suggests that magnetic activity, and its effect on envelope convection, is likely to be the cause of discrepancies in both radius and temperature, which can be removed by adjusting the mixing length parameter of the models downwards.Comment: 11 pages, 8 figures, accepted for publication by A&

    Classifying the embedded young stellar population in Perseus and Taurus & the LOMASS database

    Get PDF
    Context. The classification of young stellar objects (YSOs) is typically done using the infrared spectral slope or bolometric temperature, but either can result in contamination of samples. More accurate methods to determine the evolutionary stage of YSOs will improve the reliability of statistics for the embedded YSO population and provide more robust stage lifetimes. Aims. We aim to separate the truly embedded YSOs from more evolved sources. Methods. Maps of HCO+ J=4-3 and C18O J=3-2 were observed with HARP on the James Clerk Maxwell Telescope (JCMT) for a sample of 56 candidate YSOs in Perseus and Taurus in order to characterize emission from high (column) density gas. These are supplemented with archival dust continuum maps observed with SCUBA on the JCMT and Herschel PACS to compare the morphology of the gas and dust in the protostellar envelopes. The spatial concentration of HCO+ J=4-3 and 850 micron dust emission are used to classify the embedded nature of YSOs. Results. Approximately 30% of Class 0+I sources in Perseus and Taurus are not Stage I, but are likely to be more evolved Stage II pre-main sequence (PMS) stars with disks. An additional 16% are confused sources with an uncertain evolutionary stage. Conclusions. Separating classifications by cloud reveals that a high percentage of the Class 0+I sources in the Perseus star forming region are truly embedded Stage I sources (71%), while the Taurus cloud hosts a majority of evolved PMS stars with disks (68%). The concentration factor method is useful to correct misidentified embedded YSOs, yielding higher accuracy for YSO population statistics and Stage timescales. Current estimates (0.54 Myr) may overpredict the Stage I lifetime on the order of 30%, resulting in timescales of 0.38 Myr for the embedded phase.Comment: 33 pages, 21 figures, 6 tables, Accepted to be published in A&

    Power filtration of CMB observational data

    Full text link
    We propose a power filter Gp for linear reconstruction of the CMB signal from observational maps. This Gp filter preserves the power spectrum of the CMB signal in contrast to the Wiener filter which diminishes the power spectrum of the reconstructed CMB signal. We demonstrate how peak statistics and a cluster analysis can be used to estimate the probability of the presence of a CMB signal in observational records. The efficiency of the Gp filter is demonstrated on a toy model of an observational record consisting of a CMB signal and noise in the form of foreground point sources.Comment: 17 pages; 4 figures; submitted to International Journal of Modern Physic
    corecore